

Geometry

Administered May 2013

RELEASED

STAAR GEOMETRY REFERENCE MATERIALS

CIRCUMFERENCE			
Circle	$C = 2\pi r$	or	$C = \pi d$
AREA			
Triangle			$A = \frac{1}{2}bh$
Rectangle or parallelogram			A = bh
Rhombus			$A = \frac{1}{2}d_1d_2$
Trapezoid			$A = \frac{1}{2}(b_1 + b_2)h$
Regular polygon			$A = \frac{1}{2}aP$
Circle			$A = \pi r^2$
SURFACE AREA			
	Lateral		Total
Prism	Lateral $S = Ph$		Total $S = Ph + 2B$
Prism Pyramid			
	S = Ph		S = Ph + 2B
Pyramid	$S = Ph$ $S = \frac{1}{2}Pl$		$S = Ph + 2B$ $S = \frac{1}{2}Pl + B$
Pyramid Cylinder	$S = Ph$ $S = \frac{1}{2}Pl$ $S = 2\pi rh$		$S = Ph + 2B$ $S = \frac{1}{2}Pl + B$ $S = 2\pi rh + 2\pi r^{2}$
Pyramid Cylinder Cone	$S = Ph$ $S = \frac{1}{2}Pl$ $S = 2\pi rh$		$S = Ph + 2B$ $S = \frac{1}{2}Pl + B$ $S = 2\pi rh + 2\pi r^{2}$ $S = \pi rl + \pi r^{2}$
Pyramid Cylinder Cone Sphere	$S = Ph$ $S = \frac{1}{2}Pl$ $S = 2\pi rh$		$S = Ph + 2B$ $S = \frac{1}{2}Pl + B$ $S = 2\pi rh + 2\pi r^{2}$ $S = \pi rl + \pi r^{2}$
Pyramid Cylinder Cone Sphere VOLUME	$S = Ph$ $S = \frac{1}{2}Pl$ $S = 2\pi rh$		$S = Ph + 2B$ $S = \frac{1}{2}Pl + B$ $S = 2\pi rh + 2\pi r^{2}$ $S = \pi rl + \pi r^{2}$ $S = 4\pi r^{2}$

STAAR GEOMETRY REFERENCE MATERIALS

COORDINATE GEOMETRY

$\left(\frac{}{2},\frac{}{2}\right)$

Distance formula
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Slope of a line
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

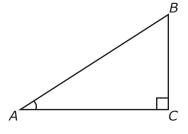
Slope-intercept form of a linear equation
$$y = mx + b$$

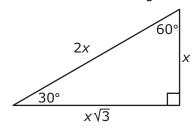
Point-slope form of a linear equation
$$y - y_1 = m(x - x_1)$$

Standard form of a linear equation
$$Ax + By = C$$

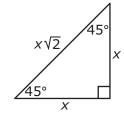
RIGHT TRIANGLES

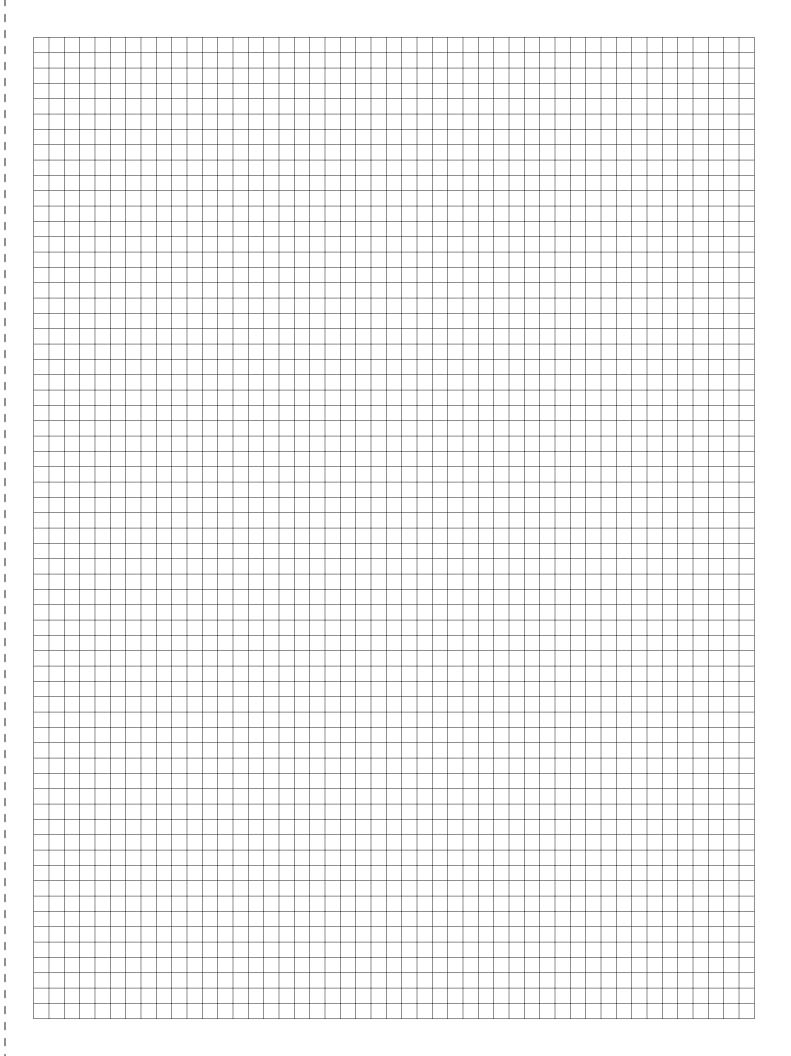
Pythagorean theorem

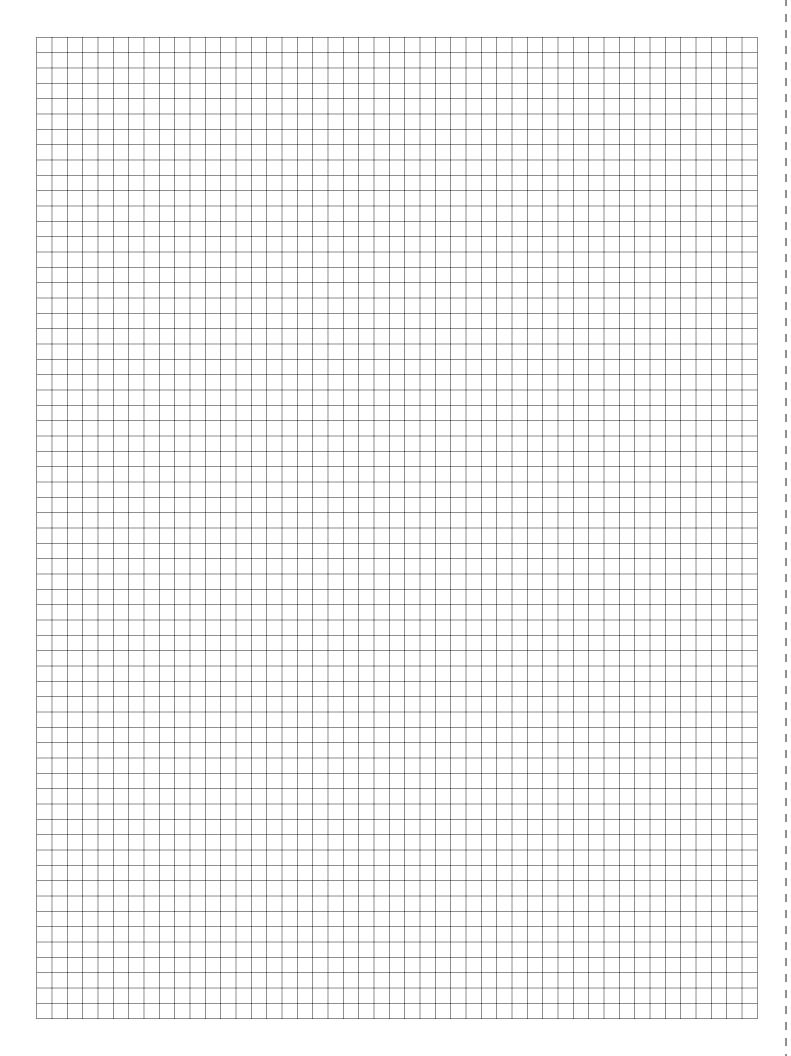

$$a^2 + b^2 = c^2$$


Trigonometric ratios

$$sin A = \frac{opposite leg}{hypotenuse}$$


$$\cos A = \frac{\text{adjacent leg}}{\text{hypotenuse}}$$


$$tan A = \frac{opposite leg}{adjacent leg}$$



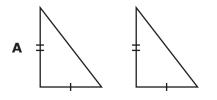
45° - 45° - 90° triangle

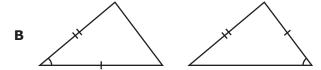
Geometry

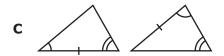
DIRECTIONS

Read each question carefully. For a multiple-choice question, determine the best answer to the question from the four answer choices provided. For a griddable question, determine the best answer to the question. Then fill in the answer on your answer document.

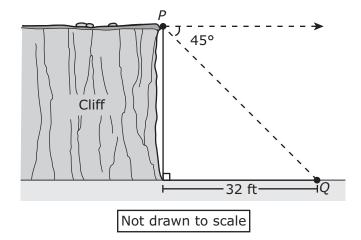
- 1 \overline{CD} has an endpoint at (2, -1) and a midpoint at (8, 3). Which measure is closest to the length of \overline{CD} ?
 - **A** 20.4 units
 - **B** 8.9 units
 - **C** 14.4 units
 - **D** 11.7 units


2 Isosceles trapezoid *JKLM* is shown below.




If the dimensions of trapezoid JKLM are multiplied by a scale factor of f to create trapezoid J'K'L'M', which statement is true?

- **F** Trapezoid J'K'L'M' contains two base angles measuring 30° each.
- **G** The longer base of trapezoid J'K'L'M' is 56f units.
- **H** The bases of trapezoid J'K'L'M' have lengths of 22 units and 39 units.
- **J** Trapezoid J'K'L'M' contains two base angles measuring $(120f)^{\circ}$ each.


3 Which pair of triangles has enough given information to prove that the triangles are congruent?

- **D** None of these
- 4 In the diagram below, the angle of depression from P to Q is 45°.

Which of the following is closest to the distance between P and Q?

- **F** 45.3 ft
- **G** 22.6 ft
- **H** 55.4 ft
- **J** 18.5 ft